国际银河线路检查中心(中国)股份有限公司 - 百度百科

师资队伍

刘安平

发布人:发表时间:2017-05-09点击:


刘安平,1961, 教 授(2000年)

学历 研究生,学位 理学硕士,毕业于武汉大学数学与统计学院,专业:基础数学

湖北省暨武汉数学学会常务理事;湖北省暨武汉数学学会学术委员会委员;湖北省公共数学专业委员会常务委员;中国数学学会会员。
长期从事偏微分方程(系统)理论、计算、应用研究及教学工作。在国外公开刊物 《Nonlinear Analysis 》、《Analysis and Applications》、《Math. Meth. Appl. Sci》、《Applied Mathematics Letters》、《Rocky Mountain Journal of Mathematics 》、 《Applied Mathematics and Computation》、《Dynamics Systems and their Application》、《Dynamics of Continuous, Discrete and Impulsive Systems》、《 Nonlinear Oscillation 》、《 Electronic Journal of Differential Equations 》及国内专业类核心刊物《应用数学与力学》、《数学年刊》、《数学的实践与认识》、《应用数学》、《数学季刊》、《数学物理学报》、《纯粹数学与应用数学》、《数学杂志》、《工程数学学报》等上共发表科研论文140多篇,SCI检索38篇。 其中第一作者60余篇。100余篇被美国的世界权威数学评论刊物 《Mathematics Review》评论、三篇第一作者论文分获湖北省优秀自然科学论文二、三等奖,三篇第一作者论文获武汉市优秀自然科学论文二等奖。


科研项目:(承担或参加973、863子项目2项、国家自然科学基金4项,以下是正在进行的项目)

1. 大型水库运行条件下滑坡演化与致灾机理,国家863高技术项目子课题,主持
2. LUCC气候效应与陆面生物地球物理效应分析模块研发,国家973重大基础研究项目子课题,主持
3. 珠江三角洲及周边地区地面沉降地质灾害监测地面沉降数学模型建立及信息系统建设,广东省地质局,主持
4. 时滞传染病动力学中的Lyapunov函数及稳定性分析,国家自然科学基金,第二。

教材:(共正式出版教材5部)

1. 《概率统计》,2009,科学出版社;
2. 《数学物理方程》,2009,武汉大学出版社;
3. 《工科数学分析》,2010,中国地质大学出版社;
4. 《线性代数与概率统计习作课教程》,2001年,国防工业出版社;
5. 《高等数学习题课教程》,1995年,中国地质大学出版社。
教学方面已给面上及专业本科生、研究生、专业研究生开设了数学物理方程、高等数学、线性代数与概率统计、复变函数与积分变换、计算方法、数学分析、偏微分方程基本理论、泛函微分方程、半群理论及其应用及反应扩散方程理论等课程。省级面向21世纪的概率统计改革项目获得湖北省优秀教学成果二等奖。现指导应用数学硕士研究生8名,已指导毕业硕士研究生25名。2013年获校级教学名师称号。近几年获得2010研究生数学建模竞赛全国一等奖1项(指导),2013-2008研究生数学建模竞赛全国二等奖6项(指导),2013-2008湖北省优秀学士论文5篇(指导),2010年湖北省优秀硕士论文1篇(指导) ,2012校“震旦杯”学术挑战赛优秀指导老师,2011校“震旦杯”学生学术挑战赛特等奖(指导),2009-2013校优秀硕士论文4篇。

主要科研论文:
1. OSCILLATION OF SOLUTIONS TO NEUTRAL IMPULSIVE HYPERBOLIC EQUATIONS WITH DELAYS(Electronic Journal of Differential Equations, 2013, SCI检索163CJ)
2. Impacts of Future Climate Changes on Shifting Patterns of the Agro-Ecological Zones China(Advances in Meteorology,2013, SCI检索号211YT)
3. Impacts of Future Urban Expansion on Regional Climate in the Northeast Megalopolis, USA(Advances in Meteorology,2013, SCI检索号221ZI)
4. A note on global stability for a heroin epidemic model with distributed delay(Applied Mathematics Letters, 2013,SCI检索号140OI)
5. Impacts of Vegetation Change on the Regional Surface Climate: A Scenario-Based Analysis of in Jiangxi,China(Advances in Meteorology,2013, SCI检索号233OU)
6. Qualitative analysis of the SICR epidemic model with impulsive vaccinations(Math. Meth. Appl. Sci,,2013,SCI检索号116UL)
7. Asymptotic dynamics of a deterministic and stochastic predator-prey model with disease in the prey species(Math. Meth. Appl. Sci,,2013,EI检索号IP52626091)
8. Landscape ecological risk assessment in Yellow River Delta(Journal of Food, Agriculture & Environment,2012, SCI检索号959KH)
9. Oscillation of nonlinear impulsive partial differential equation of neutral type(Rocky Mountain Journal of Mathematics,2011, SCI检索号797OR)
10. Existence and uniqueness of solutions for impulsive partial differential equation with delay(Nonlinear Analysis,2010, SCI检索号962FQ, 应用数学类影响因子2.38排第5/204)
11. Existence for Periodic Solutions of a Ratio-Dependent Predator-prey system with Time-varying Delays on Time Scales(Analysis and Applications, 2010, SCI检索号623GT, 数学类影响因子1.28排第25/255)
12. OSCILLATION OF A CLASS OF PARTIAL DIFFERENCE EQUATIONS WITH CONTINUOUS VARIABLES(Nonlinear Oscillation,2010, SCI检索号750TN)
13. Oscillation of impulsive hyperbolic equation with several delays(Rocky Mountain Journal of Mathematics,2007, SCI检索号264GV)
14. Oscillation of nonlinear hyperbolic differential with impulses(Dynamics of Continuous,Discrete and Impulsive Systems(A)2006, SCI126NP)
15. Oscillation of Impulsive parabolic equations of neutral type(Rocky Mountain Journal of Mathematics,2006, SCI检索号083TJ)
16. Oscillation of delay partial difference equations with Continuous variables(Dynamics of Continuous,and Impulsive Systems(B)2006, SCI检索号148GD)
17. 非线性脉冲时滞偏微分方程周期解的存在性,生物数学学报,2013,
18. 脉冲输入免疫因子HBV模型的稳定性分析,数学年刊,2011,
19. 多元产品价格互惠时滞模型的周期解及其全局稳定性,数学物理学报,2011,
20. 时滞微分方程和脉冲时滞微分方程解的存在唯一性,数学杂志,2013,
21. 具有分布时滞的病毒感染模型动力学性质研究,应用数学,2013,
22. 一阶脉冲微分方程的周期解,数学杂志,2012,
23. 耦合的凝聚态Bose-Einstein方程的双周期解,应用数学,2011,
24. Analysis of Stability and Permanence for an HBV Model with Impulsive Releasing Immune Factor,Chinese Journal of Contemporary Mathematics, 2011,
25. 非线性脉冲中立型双曲方程的振动性,数学的实践与认识,2009,
26. 刘安平.含阻尼项非线性双曲型时滞微分方程解的振动性质[J]。应用数学。1996,9(3):321-324
27. 刘安平. 非线性中立抛物型泛函微分方程解的振动判据[J]. 应用泛函分析学报, 2000, 2(4):376-381.
28. 刘安平. 中立抛物型偏微分方程解的强迫振动[J]. 工科数学, 2001,17(2):38-40.
29. ]刘安平, 於文辉等. 非线性抛物型时滞微分方程解振动的充要条件[J]. 纯粹数学与应用数学,2002,18(1):86-89
30. 刘安平. Oscillations of Hyperbolic Partial Differential Equations of Neutral type[J].数学季刊, 2002,17(2):27-32.
31. 刘安平, 何猛省. 非线性中立双曲型偏微分方程解的振动性质[J]. 应用数学与力学,2002, 23(6):604-610
32. 刘安平, 肖莉, 刘婷等. 非线性中立双曲型泛函微分方程解的振动判据[J]. 应用泛函分析学报,2002, 4(1):69-74
33. 刘安平, 何水明,李星等. 中立抛物型时滞偏微分方程解振动的充要条件[J]. 数学杂志,2003,23(3):333-336.
34. Liu Anping, Wang Guoqing,Liu Ting,Xiao Li, Necessary and Sufficient Conditions for Oscillations of parabolic Neutral Partial Differential Equations, Annals of Differential Equation, 2003, 19(3): 337-342
35. 刘安平, 肖莉, 刘婷,刘克英等. 抛物型时滞偏微分方程解振动的充要条件[J]. 纯粹数学与应用数学,2003,19(23)
36. 刘安平, 李星, 刘克英. 双曲型时滞偏微分方程解振动的充要条件[J]. 工程数学学报,2003,20(4):117-120
37. 刘安平, 马晴霞, 郭艳凤等.非线性中立时滞抛物型偏微分方程解的振动性质[J]. 大学数学, 2003,19(6):98-101
38. Anping Liu, Li Xiao, Ting Liu. Oscillation of nonlinear impulsive hyperbolic equations with several delays,Electronic Journal of Differential Equations, Vol. 2004(2004), No.24, pp. 1--6.
39. 刘安平, 刘克英, 薛秋条等.非线性中立时滞抛物型偏微分方程解的振动性质[J]. 数学的实践与认识, 2004,34(3)110-105
40. Liu Anping, Guo Yanfeng, Yang Xianghui, Oscillations of nonlinear delay hyperbolic partial differential equations[J], 数学季刊, 2004, 19(4):373-378
41. Anping Liu, Qiutiao Xue, Li Xiao, Ting Liu, Oscillations of nonlinear impulsive hyperbolic partial differential equations with several delays[J], Dynamics of Continuous, Discrete and Impulsive Systems(A), 2004:39-47
42. Anping Liu, Oscillations of nonlinear impulsive hyperbolic partial differential equations with several delays[J], Dynamics of Continuous, Discrete and Impulsive Systems(A), 2004(sup):39-47
43. Anping Liu, Li Xiao, Mengxing He, Oscillation of nonlinear hyperbolic differential equations with impulses[J], Nonlinear Oscillation, 2004, 4:439-445.
44. Anping Liu, Deyi Xu, Yunan Li, Ting Liu, Oscillations of nonlinear impulsive hyperbolic differential equations with application to hyperbolic heat conduct[J], Dynamics of Continuous, Discrete and Impulsive Systems,(B) 2005:568-573
45. Anping Liu, Yanfeng Guo, Chenpei Cui, Xianghui Yang,OSCILLATION OF NONLINEAR HYPERBOLIC DIFFERENTIAL EQUATIONS WITH IMPULSES[J], Dynamics of Continuous, Discrete and Impulsive Systems(A), 2005:633-640
46. Anping Liu, Li Xiao, Ting Liu,Yunan Li, FORCED OSCILLATIONS OF SOLUTIONS IMPULSIVE NONLINEAR PARABOLIC DIFFERENTIAL EQUATIONS WITH DELAY[J], Dynamics of Continuous, Discrete and Impulsive Systems(A), 2005(sup):668-674
47. Anping Liu, Qingxia Ma, Mengxing He, Oscillation of impulsive parabolic equations of neutral type[J], Rocky Mountain Journal of Mathematics., 2006,Vol.36,No.,3:1110-1125
48. Anping Liu, Yanfeng Guo, Lianhua He, Yanling Li, Oscillation of nonlinear delay partial difference equations with continuous variables[J], Dynamics of Continuous, Discrete and Impulsive Systems,(B) 2006(sup):1031-1034
49. Anping Liu, Xiaomei Wang, Yanling Li, Lianhua He, Oscillation of nonlinear hyperbolic differential with impulses[J], Dynamics of Continuous, Discrete and Impulsive Systems(A) 2006:69-71
50. 刘安平. 非线性双曲型时滞微分方程解的振动性质[J]。工科数学.1996,12(1): 1-4.
51. 刘安平. 时滞微分方程解的振动性质[J]。工科数学.1996,12(5): 182-184
52. 刘安平。中立双曲型时滞微分方程解振动的充要条件[J]。工科数学。1997,13(3): 40-42
53. 刘安平, 刘中全. 中立双曲型时滞微分方程解振动的充要条件[J].工科数学, 1999, 15(2): 62-63.
54. 刘安平. 非线性抛物型时滞微分方程解的振动性质[J]. 东南大学学报, 1999, 29(3A):42-44.
55. 刘安平, 欧卓玲等. 中立双曲型时滞微分方程解振动的充要条件[J]. 武汉工业大学学报,2000,22(2):89-91.
56. Mengxing He, Zhuoling Ou and Anping Liu. Comparison method of partial functional differential equations and its application, Applied Mathematics and Computation, 2002, Volume 125, Issues 2-3, Pages 271-286
57. Mengxing He, Anping Liu. Stability for large systems of partial functional differential equations: iterative analysis method, Applied Mathematics and Computation, 132(2002), 489-503
58. He Mengxing, Liu Anping, Lurie type abstract functional Diff. Equs., Dynamic Systems and Applications[J], Dynamic Publishers, Atlanta 1996,5(4): 607-626.
59. Mengxing He, Anping Liu. The Oscillations of hyperbolic functional differential equations, Applied Mathematics and Computation, 142(2003): 205-224
60. Liu Ting, Xiao Li, Liu Anping, Ma Qingxia, Oscillations of nonlinear Hyperbolic Partial Differential Equations of Neutral type, Annals of Differential Equation, 2003, 19(3): 362-367
61. Cui Chenpei, Zuo Min, Liu Anping, Xiao Li, Oscillations of nonlinear impulsive parabolic differential equations with several delays, Annals of Differential Equation, 2005, 21(1): 1-7
62. 薛秋条, 徐德义,刘安平. 非线性脉冲时滞抛物型偏微分方程解的振动性质[J]. 武汉理工大学学报, 2005,25(5)
63. Xiao Li, Liu Ting, Liu Anping, Li Yanling, Oscillations of Nonlinear Hyperbolic Differential Equations with Impulses, Annals of Differential Equation, 2005, 21(3): 465-468
64. Guo Yanfeng, Liu Anping, Yang Xianghui, Wang Xiaomei, Oscillations of Nonlinear Impulsive Parabolic Differential Equations with Several Delays, Annals of Differential Equation, 2005, 21(3): 286-289
65. Liu Keying, Xu Shaoxian,Liu Anping, Oscillations of Nonlinear Neutral Parabolic Differential Equations[J], 数学季刊, 2004, 20(4):3423-349
66. Liu Keying, Liu Anping, Liu Ting, Oscillations of Certain Nonlinear Advances Difference Equations, Annals of Differential Equation, 2006, 22(1): 33-39
67. Li Xiao, Yanfeng Guo, Tao Chang, Anping Liu, Oscillation Criteria of nonlinear delay partial difference equations with continuous variables[J], Dynamics of Continuous, Discrete and Impulsive Systems(A), 2006:76-79

Copyright 2013-2014 国际银河线路检查中心 版权所有 Tel:027-67883091 E-mail:slyb@cug.edu.cn 湖北省武汉市洪山区鲁磨路388号 邮编:430074